We study the thermal properties of a composite material in which a periodic array of finely mixed perfect thermal conductors is inserted. The suitable model describing the behaviour of such physical materials leads to the so-called equivalued surface boundary value problem. To analyze the overall conductivity of the composite medium (when the size of the inclusions tends to zero), we make use of the homogenization theory, employing the unfolding technique. The peculiarity of the problem under investigation asks for a particular care in developing the unfolding procedure, giving rise to a non-standard two-scale problem.
Homogenization results for a class of parabolic problems with a non-local interface condition via time-periodic unfolding / Amar, Micol; Andreucci, Daniele; Gianni, Roberto; Timofte, Claudia. - In: NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS. - ISSN 1021-9722. - 26:(2019).
Homogenization results for a class of parabolic problems with a non-local interface condition via time-periodic unfolding
Micol Amar
;Daniele Andreucci;
2019
Abstract
We study the thermal properties of a composite material in which a periodic array of finely mixed perfect thermal conductors is inserted. The suitable model describing the behaviour of such physical materials leads to the so-called equivalued surface boundary value problem. To analyze the overall conductivity of the composite medium (when the size of the inclusions tends to zero), we make use of the homogenization theory, employing the unfolding technique. The peculiarity of the problem under investigation asks for a particular care in developing the unfolding procedure, giving rise to a non-standard two-scale problem.File | Dimensione | Formato | |
---|---|---|---|
Amar_homogenization_2019.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
572.75 kB
Formato
Adobe PDF
|
572.75 kB | Adobe PDF | Contatta l'autore |
Amar_preprint_homogenization_2019.pdf
accesso aperto
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
269.53 kB
Formato
Adobe PDF
|
269.53 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.