We study the thermal properties of a composite material in which a periodic array of finely mixed perfect thermal conductors is inserted. The suitable model describing the behaviour of such physical materials leads to the so-called equivalued surface boundary value problem. To analyze the overall conductivity of the composite medium (when the size of the inclusions tends to zero), we make use of the homogenization theory, employing the unfolding technique. The peculiarity of the problem under investigation asks for a particular care in developing the unfolding procedure, giving rise to a non-standard two-scale problem.

Homogenization results for a class of parabolic problems with a non-local interface condition via time-periodic unfolding / Amar, Micol; Andreucci, Daniele; Gianni, Roberto; Timofte, Claudia. - In: NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS. - ISSN 1021-9722. - 26:(2019).

Homogenization results for a class of parabolic problems with a non-local interface condition via time-periodic unfolding

Micol Amar
;
Daniele Andreucci;
2019

Abstract

We study the thermal properties of a composite material in which a periodic array of finely mixed perfect thermal conductors is inserted. The suitable model describing the behaviour of such physical materials leads to the so-called equivalued surface boundary value problem. To analyze the overall conductivity of the composite medium (when the size of the inclusions tends to zero), we make use of the homogenization theory, employing the unfolding technique. The peculiarity of the problem under investigation asks for a particular care in developing the unfolding procedure, giving rise to a non-standard two-scale problem.
2019
Homogenization, time-periodic unfolding, total flux boundary conditions, parabolic problems
01 Pubblicazione su rivista::01a Articolo in rivista
Homogenization results for a class of parabolic problems with a non-local interface condition via time-periodic unfolding / Amar, Micol; Andreucci, Daniele; Gianni, Roberto; Timofte, Claudia. - In: NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS. - ISSN 1021-9722. - 26:(2019).
File allegati a questo prodotto
File Dimensione Formato  
Amar_homogenization_2019.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 572.75 kB
Formato Adobe PDF
572.75 kB Adobe PDF   Contatta l'autore
Amar_preprint_homogenization_2019.pdf

accesso aperto

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 269.53 kB
Formato Adobe PDF
269.53 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1266541
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact